跳轉到

112 工程數學(D)

說明

  • \(\mathbb{R}\):實數集
  • \(\mathbb{C}\):複數集
  • \(\mathrm{i}\):虛數單位
  • \((a + bi)^\dagger = a - bi\):共軛複數
  • \(A^\dagger\):共軛轉置(conjugate transpose)
  • \(I_n\)\(n \times n\) 單位矩陣
  • \(\mathbf{0}\):零向量或零矩陣

第 1 題(Basis and Dimension)

This problem concerns the basic definition of vector space, and its basis and dimension.

(a) (5%) Let \(\mathbb{Z}_2^n := \{0, 1\}^n\) the set of all \(n\)-bit strings for any integer \(n\). The set \(\mathbb{Z}_2^n\) forms a vector space over \(\mathbb{Z}_2\). For example, for vectors \(101, 001 \in \mathbb{Z}_2^3\) and scalars \(0, 1 \in \mathbb{Z}_2\), we have

\[101 + 001 \pmod{2} := (1 \oplus 0)(0 \oplus 0)(1 \oplus 1) = 100 \in \mathbb{Z}_2^3;$$ $$101 \cdot 1 = (1 \cdot 1)(0 \cdot 1)(1 \cdot 1) = 101 \in \mathbb{Z}_2^3;$$ $$101 \cdot 0 = (1 \cdot 0)(0 \cdot 0)(1 \cdot 0) = 000 \in \mathbb{Z}_2^3.\]

What is the dimension of the vector space \(\mathbb{Z}_2^n\) over \(\mathbb{Z}_2\)? Give a basis of the vector space \(\mathbb{Z}_2^n\) over \(\mathbb{Z}_2\).

(b) (5%) We denote '\(\dagger\)' by a conjugate transpose. For example:

\[A = \begin{bmatrix} 1 & -2 - \mathrm{i} & 5 \\ 1 + \mathrm{i} & \mathrm{i} & 4 - 2\mathrm{i} \end{bmatrix} \in \mathbb{C}^{2 \times 3};\]
\[A^\dagger = \begin{bmatrix} 1 & 1 - \mathrm{i} \\ -2 + \mathrm{i} & -\mathrm{i} \\ 5 & 4 + 2\mathrm{i} \end{bmatrix}.\]

A (possibly complex) matrix \(A\) is Hermitian if and only if \(A^\dagger = A\). Consider a vector space \(\{A \in \mathbb{C}^{n \times n} : A^\dagger = A\}\) over field of real numbers. What is its dimension?

我的答案

(a)

(b)


第 2 題(Matrix Inversion)

(a) (5%) Let \(A\) be an \(n \times n\) non-singular matrix that satisfies \(A^3 - 4A^2 + 3A - 5I_n = \mathbf{0}\). Calculate the inverse of \(A\) in terms of a polynomial of \(A\).

(b) (5%) Let \(\omega := e^{\frac{2\pi \mathrm{i}}{n}}\) for some integer \(n\) and let

\[B := \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}.\]

Calculate the inverse of \(B\). Express your answer in the most simplified form.

© (5%) Justify your answers to Problem (b).

我的答案

(a)

(b)

©


第 3 題(5%)

Suppose columns of a matrix \(A\) are \(n\) vectors in \(\mathbb{R}^m\). Answer the following questions.

(a) (True or False) \(A\) is an \(n \times m\) matrix.

(b) If the columns are linear independent, what is the rank of \(A\)?

© If the columns span \(\mathbb{R}^m\), what is the rank of \(A\)?

(d) If the columns form a basis for \(\mathbb{R}^m\), what can you say about the rank, \(n\), and \(m\)?

(e) Suppose \(A\) has rank \(r\), it means that \(A\) has \(r\) ______ columns.

(f) (True or False) The map \(T : \mathbb{R}^n \to \mathbb{R}^m\) defined by \(T(\mathbf{x}) := A\mathbf{x}\) is a linear transform.

(Getting 5 points if all answers are correct. Otherwise, 0 point.)

我的答案

(a)

(b)

©

(d)

(e)

(f)


第 4 題(Eigenvalues and Eigenvectors)

(a) (5%) Let

\[A := \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}.\]

Write down the 3 eigenvalues of \(A\) with multiplicity in the decreasing order.

(b) (10%) Suppose that an \(n \times n\) matrix \(B\) satisfies

\[B := \begin{bmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \cdots & a \end{bmatrix},\]

where \(a > 0\) and \(b > 0\). Write down all the eigenvalues of \(B\) with multiplicity in the decreasing order in terms of \(a\), \(b\), and \(n\).

© (5%) Write down all the eigenvectors associated with the above eigenvalues of \(B\). Note that each eigenvector has to be normalized to have a unit Euclidean norm.

我的答案

(a)

(b)

©


第 5 題

Consider a random variable \(X\) and \(\mathrm{E}[|X|] < \infty\). Hence, its expectation \(\mathrm{E}[X]\) exists. Let us denote \(\mathrm{E}[X]\) as \(\mu_X\) for notational simplicity. The absolute deviation from the mean is \(|X - \mu_X|\), and its expectation is denoted as

\[d_X := \mathrm{E}[|X - \mu_X|].\]

Let \(\sigma_X\) denote the standard deviation of \(X\) if it exists.

(a) (5%) Suppose the probability density function of \(X\), \(f_X(t)\), is proportional to \(e^{-\lambda|t|}\), for some \(\lambda > 0\). Derive \(d_X\) in terms of \(\sigma_X\).

(b) (5%) Let \(X\) be a normal random variable. Derive \(d_X\) in terms of \(\sigma_X\).

© (5%) Is it true that for any random variable \(X\) with finite variance, \(d_X \leq \sigma_X\)? If your answer is "yes", prove it. If your answer is "no", give a counter example.

我的答案

(a)

(b)

©


第 6 題

Let \(X\) be continuous random variable with cumulative distribution function \(F_X(t)\), \(t \in \mathbb{R}\) and probability density function \(f_X(t)\), \(t \in \mathbb{R}\). Furthermore, \(f_X(t) = f_X(-t)\) for any \(t \in \mathbb{R}\), and \(\mathrm{E}[X^2] < \infty\). Let \(Y\) be another random variable, independent of \(X\), that takes values at \(1\) or \(-1\) with equal probability, that is,

\[Y = \begin{cases} 1, & \text{with probability } 1/2 \\ -1, & \text{with probability } 1/2 \end{cases}\]

Let \(Z = XY\), the product of \(X\) and \(Y\).

(a) (5%) Are \(X\) and \(Z\) correlated? Justify your answer rigorously by deriving the covariance between \(X\) and \(Z\).

(b) (5%) Are \(X\) and \(Z\) independent? Justify your answer rigorously by deriving the joint cumulative distribution function of \(X\) and \(Z\).

我的答案

(a)

(b)


第 7 題

Let \(U\) be an uniform random variable over the interval \((0, 1)\). Given \(U = u\), \(X_1, X_2, \ldots\) are independent and identically distributed Bernoulli \(u\) random variables. Let \(W_n\) denote the number of "1"s in the length-\(n\) sequence \((X_1, X_2, \ldots, X_n)\).

(a) (5%) Derive the conditional probability mass function of \((X_1, X_2, \ldots, X_n, W_n)\) given \(U\):

\[P_{X_1, X_2, \ldots, X_n, W_n | U}(x_1, x_2, \ldots, x_n, w | u).\]

(b) (5%) Derive the conditional probability mass function of \((X_1, X_2, \ldots, X_n)\) given \(W_n\):

\[P_{X_1, X_2, \ldots, X_n | W_n}(x_1, x_2, \ldots, x_n | w).\]

© (5%) Derive the moment generating function of \(W_n\).

(d) (5%) Derive the probability mass function of \(W_n\).

(e) (5%) Derive the joint probability mass function of \((X_1, X_2, \ldots, X_n)\):

\[P_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots, x_n).\]

我的答案

(a)

(b)

©

(d)

(e)